A Denotational Engineering of Programming Languages

Part 7: Semantic correctness of programs (Sections 7.1 – 7.6 of the book)

Andrzej Jacek Blikle May 21st, 2021

A relational model of nondeterministic programs

- P, $R \subseteq S \times S$ the denotation of a nondeterministic program
 - there is a finite (terminating) computation from a to b
 - = {(a, c) | (∃ b) a P b **and** b R c}

a R b

P•R

Composition of a relations with a set

Let R : Rel(S,S) and A, B \subseteq S A R = {s | (\exists a:A) a R s} - left composition; the <u>image</u> of A by R R B = {s | (\exists b:B) s R b} - right composition; the <u>coimage</u> of B by R.

Some properties of AR and RB

- A(RQ) = (AR)Q associativity(RQ)B = R(QB)
- $(A \mid B) R = (AR) \mid (BR) distributivity \\ A (R \mid Q) = (AR) \mid (AQ)$
- if $A \subseteq B$ then $AR \subseteq BR$ monotonicity if $R \subseteq Q$ then $AR \subseteq AQ$
- $(U A_i) R = U (A_i R) continuity$ A (U R_i) = U (A R_i)
- $R (U B_i) = U (R B_i)$ $(U R_i) B = U (R_i B)$

- continuity

Structured programs in a relational framework

 $[A] : Rel(S,S) - an identity relation (function); [A] = {(a, a) | a : A}$

3-valued partial predicates p on S will be represented by two disjoint sets of states

- $\mathbf{C} = \{ \mathbf{s} \mid \mathbf{p}.\mathbf{s} = \mathbf{tt} \}, \qquad \mathbf{C} \cap \neg \mathbf{C} = \emptyset$
- $\neg \mathbf{C} = \{ s \mid p.s = ff \} \qquad \mathbf{C} \mid \neg \mathbf{C} \subseteq \mathbf{S}$

May 21st, 2021

 $S - (C | \neg C)$ – the set of states that lead to abortion (error) or infinite executions

To distinguish between abortion and infinite execution we would need a third set:

```
eC = \{s \mid p.s : Error\}We shall not exploit this option<br/>since in the construction of correct<br/>programs we want to avoid both –<br/>abortion and looping.P; Q = PQ= PQif (C,\neg C) then P else Q fi = [C] P | [\neg C] Q<br/>while (C,\neg C) do P od = ([C]P)^*[\neg C]<br/>i.e. the least solution of X = [C](PX) | [\neg C]
```

Program correctness general case – possibly nondeterministic

AR ⊆ B – partial correctness wrt precondition A and postcondition B (\forall a : A) if (\exists b) a R b then b : B For every a : A, every a-execution of R which terminates, terminates in B.

 $A \subseteq RB - \underline{\text{weak total correctness}}$ wrt <u>precondition</u> A and <u>postcondition</u> B ($\forall a : A$) ($\exists b$) a R b **and** b : B

For every a : A, **there is** a-execution of R that terminates in B but there may be other executions, that do not terminate in B or do not terminate at all.

None of these properties is stronger than the other!

Program correctness in deterministic case deterministic case – F is a function

Halting property of deterministic programs

In the general case halting property of programs is not decidable, and sometimes may be very difficult to prove.

Proof rules for partial correctness No recursion or iteration

Sequential composition

 $\begin{array}{l}
\mathsf{AP} \subseteq \mathsf{B} \\
\mathsf{B} \subseteq \mathsf{C} \\
\mathsf{CQ} \subseteq \mathsf{D} \\
\end{array}$ $\begin{array}{l}
\mathsf{A}(\mathsf{P};\mathsf{Q}) \subseteq \mathsf{D} \\
\end{array}$

Strengthening precondition

$$\begin{array}{c}
\mathsf{AP} \subseteq \mathsf{B} \\
\mathsf{C} \subseteq \mathsf{A} \\
\end{array}$$

$$\begin{array}{c}
\mathsf{CP} \subseteq \mathsf{B} \\
\end{array}$$

Conditional composition; $C \cap \neg C = \emptyset$ Weak $(A \cap C)P \subseteq B$ A $(A \cap C)Q \subseteq B$ AA if $(C, \neg C)$ then P else Q fi $\subseteq B$

 $\frac{\text{AP} \subseteq \text{B}}{\text{AP} \subseteq \text{C}}$

The general case of (mutually) recursive procedures

 $X_1 = \Psi_1.(X_1, \dots, X_n) \qquad \qquad \Psi_i - \text{polynomials, e.g.}$

$$\begin{aligned} & \cdots \\ & X_n = \Psi_n (X_1, \dots, X_n) \end{aligned} \qquad \Psi (X, Y, Z) = \mathsf{P} \times \mathsf{Q} \times \mathsf{Y} \mid \mathsf{X} \times \mathsf{Y} \mid \mathsf{P} Z \mathsf{P} \end{aligned}$$

There is nothing like canonical equations for recursion. Each case has to be considered (given a rule) separately

Simple recursion	H – head
	T – tail
X = HXT E	E - exit

while is a particular case of simple recursion

X = [C]PX | [⁻C]

Proof rules for partial correctness General recursion

A componentwise CPO of vectors of relations

R = (R₁,...,R_n) **A** = (A₁,...,A_n) **B** = (B₁,...,B_n) n ≥ 1

Let **R** be the least solution of $X = \Psi X$,

General recursion

there exists a family of (vectors of) preconditions $\{A_i \mid i \ge 0\}$ and a family of (vectors of) postconditions $\{B_i \mid i \ge 0\}$ such that $(\forall i \ge 0) A \subseteq A_i$ $(\forall i \ge 0) A_i \Psi^i \emptyset \subseteq B_i$ $U\{B_i \mid i \ge 0\} \subseteq B$

Proof rules for partial correctness simple recursion

If R is the least solution of X = HXT | E then for any A, B \subseteq S the following rules hold:

Version 1

there exists a family of preconditions $\{A_i \mid i \ge 0\}$ and a family of postconditions $\{B_i \mid i \ge 0\}$ such that $(\forall i \ge 0) A \subseteq A_i$ $(\forall i \ge 0) A_i H^i E T^i \subseteq B_i$ $U\{B_i \mid i \ge 0\} \subseteq B$ AR $\subseteq B$

<u>Version 2</u> For any A, B \subseteq S

Proof rules for partial correctness while loop

Then for any A, B \subseteq S, any disjoint C, \neg C \subseteq S, and for any P \subseteq Rel(S, S)

there exists a family of postconditions $\{B_i \mid i \ge 0\}$ such that $(\forall i \ge 0) \land ([C]P)^i [\neg C] \subseteq B_i$ $U\{B_i \mid i \ge 0\} \subseteq B$ A while (C,¬C) do P od $\subseteq B$

there exists $N \subseteq S$ (called *loop invariant*) such that $(N\cap C) P \subseteq N$ $A \subseteq N$ $N [\neg C] \subseteq B$ $A \text{ while } (C, \neg C) \text{ do } P \text{ od } \subseteq B$ to prove t set $N = A([C]P)^*$

